Abstract
Melanoma is an aggressive cancer with poor prognosis, requiring personalized management of advanced stages and establishment of molecular markers. Melanomas derive from melanocytes, which specifically express tyrosinase, the rate-limiting enzyme of melanin-synthesis. We demonstrate that melanomas with high levels of DNp73, a cancer-specific variant of the p53 family member p73 and driver of melanoma progression show, in contrast to their less-aggressive low-DNp73 counterparts, hypopigmentation in vivo. Mechanistically, reduced melanin-synthesis is mediated by a DNp73-activated IGF1R/PI3K/AKT axis leading to tyrosinase ER-arrest and proteasomal degradation. Tyrosinase loss triggers reactivation of the EMT signaling cascade, a mesenchymal-like cell phenotype and increased invasiveness. DNp73-induced depigmentation, Slug increase and changes in cell motility are recapitulated in neural crest-derived melanophores of Xenopus embryos, underscoring a previously unnoticed physiological role of tyrosinase as EMT inhibitor. This data provides a mechanism of hypo pigmentation accompanying cancer progression, which can be exploited in precision diagnosis of patients with melanoma-associated hypopigmentation (MAH), currently seen as a favorable prognostic factor. The DNp73/IGF1R/Slug signature in colorless lesions might aid to clinically discriminate between patients with MAH-associated metastatic disease and those, where MAH is indeed a sign of regression.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
ISSN: | 0304-3835 |
Sprache: | Englisch |
Dokumenten ID: | 80637 |
Datum der Veröffentlichung auf Open Access LMU: | 15. Dez. 2021, 14:54 |
Letzte Änderungen: | 15. Dez. 2021, 14:54 |