Abstract
Introduction: Several techniques can be used to treat intravesical chemohyperthermia (ChHT). We compared radiofrequency-induced hyperthermia (RF-HT) with conductive hyperthermia (C-HT) for their ability to induce bladder wall temperatures of >40.5 degrees C, the target temperature for ChHT. Materials and Methods: Fresh porcine bladders (n = 12) were placed in a temperature-controlled saline bath to simulate body temperature and circulation. HT was induced with RF-HT (43 degrees C) or C-HT (inflow temperature 44 and 46 degrees C) using a custom-made device. In two additional bladders, we varied intravesical solution and volume. Temperatures were recorded with a three-way catheter containing three mucosal and two urethral thermocouples (TCs) and a 915 MHz RF antenna, and with external TCs in the bladder wall at three different levels and three different locations. Results: Target temperature (40.5 degrees C) was reached in the submucosa at all locations by both techniques. In the detrusor, target temperature was reached by RF-HT at the bladder neck and side wall. C-HT46 reached significantly higher submucosal temperatures at the side wall. The bladder dome seemed best heated by C-HT, although a high inflow temperature (46 vs. 44 degrees C) was required (ns). Intravesical saline resulted in higher temperatures than sterile water for RF-HT. A volume of 100 mL resulted in higher bladder dome temperatures for RF-HT, and higher bladder neck with lower dome temperatures for C-HT. Conclusion: Our results indicate a slightly superior heating capacity for RF-HT compared to C-HT, whereas for the bladder dome, the reverse seems true. Comparative studies are warranted to evaluate whether HT efficacy differs between both techniques, with emphasis on tumor location.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
ISSN: | 0265-6736 |
Sprache: | Englisch |
Dokumenten ID: | 80908 |
Datum der Veröffentlichung auf Open Access LMU: | 15. Dez. 2021, 14:55 |
Letzte Änderungen: | 15. Dez. 2021, 14:55 |