Abstract
Statement of problem. Polymeric material for 3-dimensional printing can be used to fabricate occlusal devices. However, information about fracture resistance and wear is scarce. Purpose.The purpose of this in vitro study was to investigate the fracture resistance and 2-body wear of 3-dimensional-printed (3DP) (FotoDent splint;Dreve Dentamid GmbH), milled polymethylmethacrylate (CAM) (Temp Basic;Transpa 95H16, Zirkonzahn GmbH), and conventionally fabricated polymethylmethacrylate (CAST) (Castdon;Dreve Dentamid GmbH) occlusal devices. Material and methods. A total of 96 occlusal devices were prepared according to the 3 different manufacturing techniques 3DP, CAM, and CAST (n=32). For each manufacturing technique, specimens were further divided into initial fracture resistance tests (n=16) and artificial aging in the mastication simulator (50 N, 37 degrees C) with 2-body wear followed by fracture resistance tests (n=16). The fracture resistance was determined using a universal testing machine (1 mm/min). The wear was measured after 20 000 and 120 000 mastication cycles with the replica technique, mapped with a laser scanner, and quantified in R software. Data were analyzed using a 2-way ANOVA followed by a 1-way ANOVA with Scheffe or Games-Howell post hoc tests, repeated measures ANOVA with corrected Greenhouse-Geisser P values, and the Levene, Mann-Whitney, and paired t tests (alpha=.05). Results. CAM presented higher initial fracture resistance than 3DP or CAST (P<.001). After mastication simulation, CAM followed by 3DP showed higher fracture resistance than CAST (P<.001). Mastication simulation decreased the fracture resistance for CAM and CAST (P<.001) but not for 3DP (P=.78). Three-dimensional-printed occlusal devices showed the highest material volume loss, followed by CAM and the lowest in CAST (P<.001). Conclusions. Three-dimensional-printed occlusal devices showed the highest material volume loss, followed by CAM and the lowest in CAST (P<.001). Three-dimensional-printed occlusal devices showed lower wear resistance and lower fracture resistance than those milled or conventionally fabricated. Therefore, only short-term application in the mouth is recommended. Further developments of occlusal device material for 3-dimensional printing are necessary.
Item Type: | Journal article |
---|---|
Faculties: | Medicine |
Subjects: | 600 Technology > 610 Medicine and health |
ISSN: | 0022-3913 |
Language: | English |
Item ID: | 80913 |
Date Deposited: | 15. Dec 2021, 14:55 |
Last Modified: | 15. Dec 2021, 14:55 |