Abstract
Today's surge of big data coming from multiple sources is raising the stakes that pharmacovigilance has to win, making evidence synthesis a more and more robust approach in the field. In this scenario, many scholars believe that new computational methods derived from data mining will effectively enhance the detection of early warning signals for adverse drug reactions, solving the gauntlets that post-marketing surveillance requires. This article highlights the need for a philosophical approach in order to fully realize a pharmacovigilance 2.0 revolution. A state of the art on evidence synthesis is presented, followed by the illustration of E-Synthesis, a Bayesian framework for causal assessment. Computational results regarding dose-response evidence are shown at the end of this article.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Philosophie, Wissenschaftstheorie und Religionswissenschaft |
Themengebiete: | 100 Philosophie und Psychologie > 100 Philosophie |
Sprache: | Englisch |
Dokumenten ID: | 81775 |
Datum der Veröffentlichung auf Open Access LMU: | 15. Dez. 2021, 14:59 |
Letzte Änderungen: | 15. Dez. 2021, 14:59 |