Abstract
Putnam construed the aim of Carnap's program of inductive logic as the specification of a universal learning machine, and presented a diagonal proof against the very possibility of such a thing. Yet the ideas of Solomonoff and Levin lead to a mathematical foundation of precisely those aspects of Carnap's program that Putnam took issue with, and in particular, resurrect the notion of a universal mechanical rule for induction. In this paper, I take up the question whether the Solomonoff-Levin proposal is successful in this respect. I expose the general strategy to evade Putnam's argument, leading to a broader discussion of the outer limits of mechanized induction. I argue that this strategy ultimately still succumbs to diagonalization, reinforcing Putnam's impossibility claim.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Philosophie, Wissenschaftstheorie und Religionswissenschaft |
Themengebiete: | 100 Philosophie und Psychologie > 100 Philosophie |
ISSN: | 0165-0106 |
Sprache: | Englisch |
Dokumenten ID: | 81784 |
Datum der Veröffentlichung auf Open Access LMU: | 15. Dez. 2021, 14:59 |
Letzte Änderungen: | 15. Dez. 2021, 14:59 |