Abstract
Clustering refers to the task of identifying groups or clusters in a data set. In density-based clustering, a cluster is a set of data objects spread in the data space over a contiguous region of high density of objects. Density-based clusters are separated from each other by contiguous regions of low density of objects. Data objects located in low-density regions are typically considered noise or outliers. In this review article we discuss the statistical notion of density-based clusters, classic algorithms for deriving a flat partitioning of density-based clusters, methods for hierarchical density-based clustering, and methods for semi-supervised clustering. We conclude with some open challenges related to density-based clustering. This article is categorized under: Technologies > Data Preprocessing Ensemble Methods > Structure Discovery Algorithmic Development > Hierarchies and Trees
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Informatik |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
ISSN: | 1942-4787 |
Sprache: | Englisch |
Dokumenten ID: | 82222 |
Datum der Veröffentlichung auf Open Access LMU: | 15. Dez. 2021, 15:00 |
Letzte Änderungen: | 13. Aug. 2024, 13:00 |