Abstract
Clustering refers to the task of identifying groups or clusters in a data set. In density-based clustering, a cluster is a set of data objects spread in the data space over a contiguous region of high density of objects. Density-based clusters are separated from each other by contiguous regions of low density of objects. Data objects located in low-density regions are typically considered noise or outliers. In this review article we discuss the statistical notion of density-based clusters, classic algorithms for deriving a flat partitioning of density-based clusters, methods for hierarchical density-based clustering, and methods for semi-supervised clustering. We conclude with some open challenges related to density-based clustering. This article is categorized under: Technologies > Data Preprocessing Ensemble Methods > Structure Discovery Algorithmic Development > Hierarchies and Trees
Item Type: | Journal article |
---|---|
Faculties: | Mathematics, Computer Science and Statistics > Computer Science |
Subjects: | 000 Computer science, information and general works > 004 Data processing computer science |
ISSN: | 1942-4787 |
Language: | English |
Item ID: | 82222 |
Date Deposited: | 15. Dec 2021 15:00 |
Last Modified: | 15. Dec 2021 15:00 |