Abstract
This letter addresses the coordinated control of the spacecraft's attitude and the end-effector pose of a manipulator-equipped space robot. A controller is proposed to simultaneously regulate the spacecraft's attitude, the global center-of-mass, and the end-effector pose. The control is based on a triangular actuation decomposition that decouples the end-effector task from the spacecraft's force actuator, increasing fuel efficiency. The strategy is validated in hardware using a robotic motion simulator composed of a seven degrees-of-freedom (DOF) arm mounted on a six DOF base. The tradeoff between control requirements and fuel consumption is discussed.
Item Type: | Journal article |
---|---|
Faculties: | Mathematics, Computer Science and Statistics > Computer Science |
Subjects: | 000 Computer science, information and general works > 004 Data processing computer science |
ISSN: | 2377-3766 |
Language: | English |
Item ID: | 82315 |
Date Deposited: | 15. Dec 2021, 15:01 |
Last Modified: | 15. Dec 2021, 15:01 |