Abstract
We study the asymptotics of the natural L-2 metric on the Hitchin moduli space with group G=SU(2). Our main result, which addresses a detailed conjectural picture made by Gaiotto etal. (Adv Math 234:239-403, 2013), is that on the regular part of the Hitchin system, this metric is well-approximated by the semiflat metric from Gaiotto et al. (2013). We prove that the asymptotic rate of convergence for gauged tangent vectors to the moduli space has a precise polynomial expansion, and hence that the difference between the two sets of metric coefficients in a certain natural coordinate system also has polynomial decay. New work by Dumas-Neitzke and later Fredrickson shows that the convergence is actually exponential.
| Dokumententyp: | Zeitschriftenartikel |
|---|---|
| Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
| Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
| ISSN: | 0010-3616 |
| Sprache: | Englisch |
| Dokumenten ID: | 82385 |
| Datum der Veröffentlichung auf Open Access LMU: | 15. Dez. 2021 15:01 |
| Letzte Änderungen: | 13. Aug. 2024 12:43 |
