Abstract
We propose a novel complex-analytic method for sums of i.i.d. random variables that are heavy-tailed and integer-valued. The method combines singularity analysis, Lindelof integrals, and bivariate saddle points. As an application, we prove three theorems on precise large and moderate deviations which provide a local variant of a result by Nagaev (Transactions of the sixth Prague conference on information theory, statistical decision functions, random processes, Academia, Prague, 1973). The theorems generalize five theorems by Nagaev (Litov Mat Sb 8:553-579, 1968) on stretched exponential laws p(k)=cexp(-k) and apply to logarithmic hazard functions cexp(-(logk)), >2;they cover the big-jump domain as well as the small steps domain. The analytic proof is complemented by clear probabilistic heuristics. Critical sequences are determined with a non-convex variational problem.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 0894-9840 |
Sprache: | Englisch |
Dokumenten ID: | 82387 |
Datum der Veröffentlichung auf Open Access LMU: | 15. Dez. 2021, 15:01 |
Letzte Änderungen: | 13. Aug. 2024, 12:43 |