Abstract
We show that many spin 6-manifolds have the homotopy type but not the homeomorphism type of a Kahler manifold. Moreover, for given Betti numbers, there are only finitely many deformation types and hence topological types of smooth complex projective spin threefolds of general type. Finally, on a fixed spin 6-manifold, the Chern numbers take on only finitely many values on all possible Kahler structures.
| Dokumententyp: | Zeitschriftenartikel |
|---|---|
| Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
| Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
| ISSN: | 0025-5831 |
| Sprache: | Englisch |
| Dokumenten ID: | 82389 |
| Datum der Veröffentlichung auf Open Access LMU: | 15. Dez. 2021 15:01 |
| Letzte Änderungen: | 13. Aug. 2024 12:43 |
