Berger, Josef; Svindland, Gregor (2019): Convexity and unique minimum points. In: Archive for Mathematical Logic, Vol. 58, No. 1-2: pp. 27-34 |
Full text not available from 'Open Access LMU'.
Abstract
We show constructively that every quasi-convex, uniformly continuous function f:CR with at most one minimum point has a minimum point, where C is a convex compact subset of a finite dimensional normed space. Applications include a result on strictly quasi-convex functions, a supporting hyperplane theorem, and a short proof of the constructive fundamental theorem of approximation theory.
Item Type: | Journal article |
---|---|
Faculties: | Mathematics, Computer Science and Statistics > Mathematics |
Subjects: | 500 Science > 510 Mathematics |
ISSN: | 0933-5846 |
Language: | English |
ID Code: | 82394 |
Deposited On: | 15. Dec 2021 15:01 |
Last Modified: | 15. Dec 2021 15:01 |
Repository Staff Only: item control page