Abstract
Let d >= 2 be an integer and let 2d/(d - 1) < q <= infinity. In this paper we investigate the sharp form of the mixed norm Fourier extension inequality parallel to<(f sigma)over cap>parallel to(LradLang2)-L-n(R-d) <= C-d,C- q parallel to f parallel to L-2(Sd-1, d sigma), established by L. Vega in 1988. Letting A(d) subset of (2d/(d - 1), infinity] be the set of exponents for which the constant functions on Sd-1 are the unique extremizers of this inequality, we show that: (i) A(d) contains the even integers and infinity;(ii) A(d) is an open set in the extended topology;(iii) A(d) contains a neighborhood of infinity (qo (d), infinity] with qo (d) <= (1/2 + o(1)) d log d. In low dimensions we show that qo (2) <= 6.76;qo(3) <= 5.45;qo (4) <= 5.53;qo(5) <= 6.07. In particular, this breaks for the first time the even exponent barrier in sharp Fourier restriction theory. The crux of the matter in our approach is to establish a hierarchy between certain weighted norms of Bessel functions, a nontrivial question of independent interest within the theory of special functions. (C) 2018 Elsevier Inc. All rights reserved.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 0001-8708 |
Sprache: | Englisch |
Dokumenten ID: | 82397 |
Datum der Veröffentlichung auf Open Access LMU: | 15. Dez. 2021, 15:01 |
Letzte Änderungen: | 13. Aug. 2024, 12:43 |