Abstract
We introduce a family of real random variables (beta, theta) arising from the supersymmetric nonlinear sigma model H-2 vertical bar 2 and containing the family beta introduced by Sabot, Tarres, and Zeng (Sabot et al., 2017) in the context of the vertex-reinforced jump process. Using this family we construct an exponential martingale generalizing the ones considered in Sabot and Zeng (2018+) and Disertori et al. (2017). Moreover, using the full supersymmetric nonlinear sigma model we also construct a generalization of the exponential martingale involving Grassmann variables.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 1980-0436 |
Sprache: | Englisch |
Dokumenten ID: | 82403 |
Datum der Veröffentlichung auf Open Access LMU: | 15. Dez. 2021, 15:01 |
Letzte Änderungen: | 13. Aug. 2024, 12:43 |