Abstract
Plasmonic biosensors have demonstrated superior performance in detecting various biomolecules with high sensitivity through simple assays. Scaled-up, reproducible chip production with a high density of hotspots in a large area has been technically challenging, limiting the commercialization and clinical translation of these biosensors. A new fabrication method for 3D plasmonic nanostructures with a high density, large volume of hotspots and therefore inherently improved detection capabilities is developed. Specifically, Au nanoparticle-spiked Au nanopillar arrays are prepared by utilizing enhanced surface diffusion of adsorbed Au atoms on a slippery Au nanopillar arrays through a simple vacuum process. This process enables the direct formation of a high density of spherical Au nanoparticles on the 1 nm-thick dielectric coated Au nanopillar arrays without high-temperature annealing, which results in multiple plasmonic coupling, and thereby large effective volume of hotspots in 3D spaces. The plasmonic nanostructures show signal enhancements over 8.3 x 10(8)-fold for surface-enhanced Raman spectroscopy and over 2.7 x 10(2)-fold for plasmon-enhanced fluorescence. The 3D plasmonic chip is used to detect avian influenza-associated antibodies at 100 times higher sensitivity compared with unstructured Au substrates for plasmon-enhanced fluorescence detection. Such a simple and scalable fabrication of highly sensitive 3D plasmonic nanostructures provides new opportunities to broaden plasmon-enhanced sensing applications.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Physik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik |
ISSN: | 1616-301X |
Sprache: | Englisch |
Dokumenten ID: | 82620 |
Datum der Veröffentlichung auf Open Access LMU: | 15. Dez. 2021, 15:02 |
Letzte Änderungen: | 15. Dez. 2021, 15:02 |