Logo Logo
Switch Language to German
Wang, Qing; Zhang, Jinwei; Kessel, Alexander; Nagl, Nathalie; Pervak, Vladimir; Pronin, Oleg; Mak, Ka Fai (2019): Broadband mid-infrared coverage (2-17 mu m) with few-cycle pulses via cascaded parametric processes. In: Optics Letters, Vol. 44, No. 10: pp. 2566-2569
Full text not available from 'Open Access LMU'.


A myriad of existing and emerging applications could benefit from coherent and broadband mid-infrared (MIR) light. Yet, existing tabletop sources are often complex or sensitive to interferometric optical misalignment. Here we demonstrate a significantly simplified scheme of broadband MIR generation by cascading the intra-pulse difference-frequency generation process in a specific nonlinear crystal. This allows pulses generated directly from mode-locked lasers to be used without further nonlinear temporal compression. The system, together with the driving beam, can provide an ultra-broadband coherent radiation coverage ranging from 2 to 17 mu m with femtosecond pulse durations. To the best of our knowledge, this is the first demonstration of cascaded DFG in the MIR range, which brings emerging time-domain spectroscopic techniques closer to real-world applications. (C) 2019 Optical Society of America