Logo Logo
Hilfe
Hilfe
Switch Language to English

Schreiber, N. M. Foerster; Uebler, H.; Davies, R. L.; Genzel, R.; Wisnioski, E.; Belli, S.; Shimizu, T.; Lutz, D.; Fossati, M.; Herrera-Camus, R.; Mendel, J. T.; Tacconi, L. J.; Wilman, D.; Beifiori, A.; Brammer, G. B.; Burkert, A.; Carollo, C. M.; Davies, R.; Eisenhauer, F.; Fabricius, M.; Lilly, S. J.; Momcheva, I; Naab, T.; Nelson, E. J.; Price, S. H.; Renzini, A.; Saglia, R.; Sternberg, A.; van Dokkum, P. und Wuyts, S. (2019): The KMOS3D Survey: Demographics and Properties of Galactic Outflows at z=0.6-2.7. In: Astrophysical Journal, Bd. 875, Nr. 1, 21

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

We present a census of ionized gas outflows in 599 normal galaxies at redshift 0.6 < z < 2.7, mostly based on integral field spectroscopy of H alpha, [N II], and [S II] line emission. The sample fairly homogeneously covers the main sequence of star-forming galaxies with masses 9.0 < log(M-*/M-circle dot) < 11.7, and probes into the regimes of quiescent galaxies and starburst outliers. About one-third exhibits the high-velocity component indicative of outflows, roughly equally split into winds driven by star formation (SF) and active galactic nuclei (AGNs). The incidence of SF-driven winds correlates mainly with SF properties. These outflows have typical velocities of similar to 450 km s(-1), local electron densities of n(e) similar to 380 cm(-3), modest mass loading factors of similar to 0.1-0.2 at all galaxy masses, and energetics compatible with momentum driving by young stellar populations. The SF-driven winds may escape from log(M-*/M-circle dot) less than or similar to 10.3 galaxies, but substantial mass, momentum, and energy in hotter and colder outflow phases seem required to account for low galaxy formation efficiencies in the low-mass regime. Faster AGN-driven outflows (similar to 1000-2000 km s(-1)) are commonly detected above log(M-*/M-circle dot) similar to 10.7, in up to similar to 75% of log(M-*/M-circle dot) greater than or similar to 11.2 galaxies. The incidence, strength, and velocity of AGN-driven winds strongly correlates with stellar mass and central concentration. Their outflowing ionized gas appears denser (n(e) similar to 1000 cm(-3)), and possibly compressed and shock-excited. These winds have comparable mass loading factors as the SF-driven winds but carry similar to 10 (similar to 50) times more momentum (energy). The results confirm our previous findings of high-duty-cycle, energy-driven outflows powered by AGN above the Schechter mass, which may contribute to SF quenching.

Dokument bearbeiten Dokument bearbeiten