Abstract
The search of unconventional magnetic and nonmagnetic states is a major topic in the study of frustrated magnetism. Canonical examples of those states include various spin liquids and spin nematics. However, discerning their existence and the correct characterization is usually challenging. Here we introduce a machine-learning protocol that can identify general nematic order and their order parameter from seemingly featureless spin configurations, thus providing comprehensive insight on the presence or absence of hidden orders. We demonstrate the capabilities of our method by extracting the analytical form of nematic order parameter tensors up to rank 6. This may prove useful in the search for novel spin states and for ruling out spurious spin liquid candidates.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Physik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik |
ISSN: | 2469-9950 |
Sprache: | Englisch |
Dokumenten ID: | 82955 |
Datum der Veröffentlichung auf Open Access LMU: | 15. Dez. 2021, 15:04 |
Letzte Änderungen: | 15. Dez. 2021, 15:04 |