Logo Logo
Switch Language to German

Fuest, Harald; Lai, Yu Hang; Blaga, Cosmin I.; Suzuki, Kazuma; Xu, Junliang; Rupp, Philipp; Li, Hui; Wnuk, Pawel; Agostini, Pierre; Yamazaki, Kaoru; Kanno, Manabu; Kono, Hirohiko; Kling, Matthias F. and DiMauro, Louis F. (2019): Diffractive Imaging of C-60 Structural Deformations Induced by Intense Femtosecond Midinfrared Laser Fields. In: Physical Review Letters, Vol. 122, No. 5, 053002

Full text not available from 'Open Access LMU'.


Theoretical studies indicated that C-60 exposed to linearly polarized intense infrared pulses undergoes periodic cage structural distortions with typical periods around 100 fs (1 fs = 10(-15) s). Here, we use the laser-driven self-imaging electron diffraction technique, previously developed for atoms and small molecules, to measure laser-induced deformation of C-60 in an intense 3.6 mu m laser field. A prolate molecular elongation along the laser polarization axis is determined to be (6.1 +/- 1.4)% via both angular- and energy-resolved measurements of electrons that are released, driven back, and diffracted from the molecule within the same laser field. The observed deformation is confirmed by density functional theory simulations of nuclear dynamics on time-dependent adiabatic states and indicates a nonadiabatic excitation of the h(g) (1) prolate-oblate mode. The results demonstrate the applicability of laser-driven electron diffraction methods for studying macromolecular structural dynamics in four dimensions with atomic time and spatial resolutions.

Actions (login required)

View Item View Item