Abstract
A multistep synthesis procedure for the homogeneous coating of a complex porous conductive oxide with small Ir nanoparticles is introduced to obtain a highly active electrocatalyst for water oxidation. At first, inverse opal macroporous Sb doped SnO2 (ATO) microparticles with defined pore size, composition, and open-porous morphology are synthesized that reach a conductivity of approximate to 3.6 S cm(-1) and are further used as catalyst support. ATO-supported iridium catalysts with a controlled amount of active material are prepared by solvothermal reduction of an IrOx colloid in the presence of the porous ATO particles, whereby homogeneous coating of the complete outer and inner surface of the particles with nanodispersed metallic Ir is achieved. Thermal oxidation leads to the formation of ATO-supported IrO2 nanoparticles with a void volume fraction of approximate to 89% calculated for catalyst thin films based on scanning transmission electron microscope tomography data and microparticle size distribution. A remarkably low Ir bulk density of approximate to 0.08 g cm(-3) for this supported oxide catalyst architecture with 25 wt% Ir is determined. This highly efficient oxygen evolution reaction catalyst reaches a current density of 63 A g(Ir)(-1) at an overpotential of 300 mV versus reversible hydrogen electrode, significantly exceeding a commercial TiO2-supported IrO2 reference catalyst under the same measurement conditions.
Item Type: | Journal article |
---|---|
Faculties: | Chemistry and Pharmacy > Department of Chemistry |
Research Centers: | Center for NanoScience (CENS) |
Subjects: | 500 Science > 540 Chemistry 500 Science > 500 Science |
ISSN: | 1616-301X |
Language: | English |
Item ID: | 83252 |
Date Deposited: | 15. Dec 2021, 15:07 |
Last Modified: | 15. Dec 2021, 15:07 |