Logo Logo
Hilfe
Hilfe
Switch Language to English

Siebert, Max; Seibicke, Max; Siegle, Alexander F.; Kraeh, Sabrina und Trapp, Oliver (2019): Selective Ruthenium-Catalyzed Transformation of Carbon Dioxide: An Alternative Approach toward Formaldehyde. In: Journal of the American Chemical Society, Bd. 141, Nr. 1: S. 334-341

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

Formaldehyde is an important precursor to numerous industrial processes and is produced in multimillion ton scale every year by catalytic oxidation of methanol in an energetically unfavorable and atom-inefficient industrial process. In this work, we present a highly selective one-step synthesis of a formaldehyde derivative starting from carbon dioxide and hydrogen gas utilizing a homogeneous ruthenium catalyst. Here, formaldehyde is obtained as dimethoxymethane, its dimethyl acetal, by selective reduction of carbon dioxide at moderate temperatures (90 degrees C) and partial pressures (90 bar H-2/20 bar CO2) in the presence of methanol. Besides the desired product, only methyl formate is formed, which can be transformed to dimethoxymethane in a consecutive catalytic step. By comprehensive screening of the catalytic system, maximum turnover numbers of 786 for dimethoxymethane and 1290 for methyl formate were achieved with remarkable selectivities of over 90% for dimethoxymethane.

Dokument bearbeiten Dokument bearbeiten