Logo Logo
Help
Contact
Switch Language to German
Hohner, Ricarda; Galvis, Viviana Correa; Strand, Deserah D.; Volkner, Carsten; Kramer, Moritz; Messer, Michaela; Dinc, Firdevs; Sjuts, Inga; Boelter, Bettina; Kramer, David M.; Armbruster, Ute; Kunz, Hans-Henning (2019): Photosynthesis in Arabidopsis Is Unaffected by the Function of the Vacuolar K+ Channel TPK3. In: Plant Physiology, Vol. 180, No. 3: pp. 1322-1335
Full text not available from 'Open Access LMU'.

Abstract

Photosynthesis is limited by the slow relaxation of nonphotochemical quenching, which primarily dissipates excess absorbed light energy as heat. Because the heat dissipation process is proportional to light-driven thylakoid lumen acidification, manipulating thylakoid ion and proton flux via transport proteins could improve photosynthesis. However, an important aspect of the current understanding of the thylakoid ion transportome is inaccurate. Using fluorescent protein fusions, we show that the Arabidopsis (Arabidopsis thaliana) two-pore K+ channel TPK3, which had been reported to mediate thylakoid K+ flux, localizes to the tonoplast, not the thylakoid. The localization of TPK3 outside of the thylakoids is further supported by the absence of TPK3 in isolated thylakoids as well as the inability of isolated chloroplasts to import TPK3 protein. In line with the subcellular localization of TPK3 in the vacuole, we observed that photosynthesis in the Arabidopsis null mutant tpk3-1, which carries a transfer DNA insertion in the first exon, remains unaffected. To gain a comprehensive understanding of how thylakoid ion flux impacts photosynthetic efficiency under dynamic growth light regimes, we performed long-term photosynthesis imaging of established and newly isolated transthylakoid K+- and Cl--flux mutants. Our results underpin the importance of the thylakoid ion transport proteins potassium cation efflux antiporter KEA3 and voltage-dependent chloride channel VCCN1 and suggest that the activity of yet unknown K+ channel(s), but not TPK3, is critical for optimal photosynthesis in dynamic light environments.