Abstract
Continuous monitoring of glacier changes supports our understanding of climate related glacier behavior. Remote sensing data offer the unique opportunity to observe individual glaciers as well as entire mountain ranges. In this study, we used synthetic aperture radar (SAR) data to monitor the recession of wet snow area extent per season for three different glacier areas of the Rofental, Austria. For four glaciological years (GYs, 2014/2015-2017/2018), Sentinel-1 (S1) SAR data were acquired and processed. For all four GYs, the seasonal snow retreated above the elevation range of perennial firn. The described processing routine is capable of discriminating wet snow from firn areas for all GYs with sufficient accuracy. For a short in situ transect of the snowfirn boundary, SAR derived wet snow extent agreed within an accuracy of three to four pixels or 30-40 m. For entire glaciers, we used optical remote sensing imagery and field data to assess reliability of derived wet snow covered area extent. Differences in determination of snow covered area between optical data and SAR analysis did not exceed 10% on average. Offsets of SAR data to results of annual field assessments are below 10% as well. The introduced workflow for S1 data will contribute to monitoring accumulation area extent for remote and hazardous glacier areas and thus improve the data basis for such locations.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Geowissenschaften > Department für Geo- und Umweltwissenschaften |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 550 Geowissenschaften, Geologie |
ISSN: | 2076-3263 |
Sprache: | Englisch |
Dokumenten ID: | 84126 |
Datum der Veröffentlichung auf Open Access LMU: | 15. Dez. 2021, 15:10 |
Letzte Änderungen: | 15. Dez. 2021, 15:10 |