Logo Logo
Hilfe
Hilfe
Switch Language to English

Speckbacher, Maximilian; Rinderle, Michael; Kaiser, Waldemar; Osman, Eiman A.; Chryssikos, Domenikos; Cattani-Scholz, Anna; Gibbs, Julianne M.; Gagliardi, Alessio und Tornow, Marc (2019): Directed Assembly of Nanoparticle Threshold-Selector Arrays. In: Advanced Electronic Materials, Bd. 5, Nr. 7, 1900098

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

The directed assembly of ordered arrays of cubic silver nanoparticles featuring distinct electrical threshold-switching characteristics is reported. Threshold selectors are key elements for nonvolatile resistive random-access-memory architectures, as they suppress sneak path currents in crosspoint arrays. Nanocubes are site-selectively immobilized on a TiO2-coated silicon surface via a complementary molecular surface functionalization of nanoparticles and substrate based on a Cu(I)-catalyzed alkyne-azide cycloaddition without any physical template. Electrical characterization of individual silver nanocubes by conductive-probe atomic force microscopy reveals pronounced and reproducible threshold-switching behavior, featuring ultralow OFF currents below 1 pA, steep turn-on slopes of <50 mV dec(-1) and ON-OFF ratios in excess of 10(3). Numerical simulation of Ag-ion migration dynamics in the TiO2 electrolyte using a kinetic Monte Carlo model supports a switching mechanism based on conductive filament formation from Ag nanoclusters, and their reversible rupture in the low-voltage regime. Assembled Ag nanocube threshold selectors are proposed for applications in memristive memory architectures, in particular for future highly integrated 3D circuitry.

Dokument bearbeiten Dokument bearbeiten