Abstract
We describe LMU Munich's machine translation system for English -> German translation which was used to participate in the WMT19 shared task on supervised news translation. We specifically participated in the document-level MT track. The system used as a primary submission is a context-aware Transformer capable of both rich modeling of limited contextual information and integration of large-scale document-level context with a less rich representation. We train this model by fine-tuning a big Transformer baseline. Our experimental results show that document-level context provides for large improvements in translation quality, and adding a rich representation of the previous sentence provides a small additional gain.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultätsübergreifende Einrichtungen: | Centrum für Informations- und Sprachverarbeitung (CIS) |
Themengebiete: | 400 Sprache > 400 Sprache |
Sprache: | Englisch |
Dokumenten ID: | 84246 |
Datum der Veröffentlichung auf Open Access LMU: | 15. Dez. 2021, 15:10 |
Letzte Änderungen: | 15. Dez. 2021, 15:10 |