Abstract
scikit-survival is an open-source Python package for time-to-event analysis fully compatible with scikit-learn. It provides implementations of many popular machine learning techniques for time-to-event analysis, including penalized Cox model, Random Survival Forest, and Survival Support Vector Machine. In addition, the library includes tools to evaluate model performance on censored time-to-event data. The documentation contains installation instructions, interactive notebooks, and a full description of the API. scikit-survival is distributed under the GPL-3 license with the source code and detailed instructions available at https://github.com/sebp/scikit- survival
| Dokumententyp: | Zeitschriftenartikel |
|---|---|
| Fakultät: | Medizin |
| Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
| ISSN: | 1532-4435 |
| Sprache: | Englisch |
| Dokumenten ID: | 84811 |
| Datum der Veröffentlichung auf Open Access LMU: | 25. Jan. 2022 09:11 |
| Letzte Änderungen: | 25. Jan. 2022 09:11 |
