Abstract
This cohort study aims to detect psychosis subgroups and examine their illness courses over 1.5 years and their polygenic scores for schizophrenia, bipolar disorder, major depression disorder, and educational achievement. Question: Will data-driven clustering using high-dimensional clinical data reveal psychosis subgroups with relevance to prognoses and polygenic risk? Findings: In this cohort study including 1223 individuals, in the discovery sample of 765 individuals with predominantly bipolar and schizophrenia diagnoses, 5 subgroups were detected with different clinical signatures, illness trajectories, and genetic scores for educational attainment. Results were validated in a sample of 458 individuals. Meaning: New data-driven clustering paired with rigorous validation may offer a means to extend symptom-based psychosis taxonomies toward functional outcomes, genetic markers, and trajectory-based stratifications. Importance Identifying psychosis subgroups could improve clinical and research precision. Research has focused on symptom subgroups, but there is a need to consider a broader clinical spectrum, disentangle illness trajectories, and investigate genetic associations. Objective: To detect psychosis subgroups using data-driven methods and examine their illness courses over 1.5 years and polygenic scores for schizophrenia, bipolar disorder, major depression disorder, and educational achievement. Design, Setting, and Participants This ongoing multisite, naturalistic, longitudinal (6-month intervals) cohort study began in January 2012 across 18 sites. Data from a referred sample of 1223 individuals (765 in the discovery sample and 458 in the validation sample) with DSM-IV diagnoses of schizophrenia, bipolar affective disorder (I/II), schizoaffective disorder, schizophreniform disorder, and brief psychotic disorder were collected from secondary and tertiary care sites. Discovery data were extracted in September 2016 and analyzed from November 2016 to January 2018, and prospective validation data were extracted in October 2018 and analyzed from January to May 2019. Main Outcomes and Measures: A clinical battery of 188 variables measuring demographic characteristics, clinical history, symptoms, functioning, and cognition was decomposed using nonnegative matrix factorization clustering. Subtype-specific illness courses were compared with mixed models and polygenic scores with analysis of covariance. Supervised learning was used to replicate results in validation data with the most reliably discriminative 45 variables. Results Of the 765 individuals in the discovery sample, 341 (44.6%) were women, and the mean (SD) age was 42.7 (12.9) years. Five subgroups were found and labeled as affective psychosis (n = 252), suicidal psychosis (n = 44), depressive psychosis (n = 131), high-functioning psychosis (n = 252), and severe psychosis (n = 86). Illness courses with significant quadratic interaction terms were found for psychosis symptoms (R-2 = 0.41;95% CI, 0.38-0.44), depression symptoms (R-2 = 0.28;95% CI, 0.25-0.32), global functioning (R-2 = 0.16;95% CI, 0.14-0.20), and quality of life (R-2 = 0.20;95% CI, 0.17-0.23). The depressive and severe psychosis subgroups exhibited the lowest functioning and quadratic illness courses with partial recovery followed by reoccurrence of severe illness. Differences were found for educational attainment polygenic scores (mean [SD] partial eta(2) = 0.014 [0.003]) but not for diagnostic polygenic risk. Results were largely replicated in the validation cohort. Conclusions and Relevance: Psychosis subgroups were detected with distinctive clinical signatures and illness courses and specificity for a nondiagnostic genetic marker. New data-driven clinical approaches are important for future psychosis taxonomies. The findings suggest a need to consider short-term to medium-term service provision to restore functioning in patients stratified into the depressive and severe psychosis subgroups.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
ISSN: | 2168-622X |
Sprache: | Englisch |
Dokumenten ID: | 84849 |
Datum der Veröffentlichung auf Open Access LMU: | 25. Jan. 2022, 09:12 |
Letzte Änderungen: | 25. Jan. 2022, 09:12 |