Abstract
The mitochondrial oxidative phosphorylation system comprises complexes assembled from subunits derived from mitochondrial and nuclear gene expression. Both genetic systems are coordinated by feedback loops, which control the synthesis of specific mitochondrial encoded subunits. Here, we studied how this occurs in the case of cytochrome b, a key subunit of mitochondrial complex III. Our data suggest the presence of a molecular rheostat consisting of two translational activators, Cbp3-Cbp6 and Cbs1, which operates at the mitoribosomal tunnel exit to connect translational output with assembly efficiency. When Cbp3-Cbp6 is engaged in assembly of cytochrome b, Cbs1 binds to the tunnel exit to sequester the cytochrome b-encoding mRNA, repressing its translation. After mediating complex III assembly, binding of Cbp3-Cbp6 to the tunnel exit replaces Cbs1 and the bound mRNA to permit cytochrome b synthesis. Collectively, the data indicate the molecular wiring of a feedback loop to regulate synthesis of a mitochondrial encoded protein.
Item Type: | Journal article |
---|---|
Faculties: | Medicine |
Subjects: | 600 Technology > 610 Medicine and health |
ISSN: | 1097-2765 |
Language: | English |
Item ID: | 85845 |
Date Deposited: | 25. Jan 2022, 09:16 |
Last Modified: | 25. Jan 2022, 09:16 |