Logo Logo
Hilfe
Hilfe
Switch Language to English

Yang, Hong; Juestel, Dominik; Prakash, Jaya; Karlas, Angelos; Helfen, Anne; Masthoff, Max; Wildgruber, Moritz und Ntziachristos, Vasilis (2020): Soft ultrasound priors in optoacoustic reconstruction: Improving clinical vascular imaging. In: Photoacoustics, Bd. 19, 100172

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

Using the same ultrasound detector, hybrid optoacoustic-ultrasound (OPUS) imaging provides concurrent scans of tissue slices or volumes and visualizes complementary sound- and light-based contrast at similar resolutions. In addition to the benefit of hybrid contrast, spatial co-registration enables images from one modality to be employed as prior information for improving an aspect of the performance of the other modality. We consider herein a handheld OPUS system and utilize structural information from ultrasound images to guide regional Laplacian regularization-based reconstruction of optoacoustic images. Using phantoms and data from OPUS scans of human radial and carotid arteries, we show that ultrasound-driven optoacoustic inversion reduces limited-view artefacts and improves image contrast. In phantoms, prior-integrated reconstruction leads to a 50 % higher contrast-to-noise ratio (CNR) of the image than standard reconstruction, and a 17 % higher structural similarity (SSIM) index. In clinical data, prior-integrated reconstruction detects deep-seated radial arteries with higher CNR than the standard method at three different depths. In this way, the prior-integrated method offers unique insights into atherosclerotic carotid plaques in humans (with p < 0.01 between patients and healthy volunteers), potentially paving the way for new abilities in vascular imaging and more generally in optoacoustic imaging.

Dokument bearbeiten Dokument bearbeiten