Logo Logo
Hilfe
Hilfe
Switch Language to English

Hoepken, Wolfram; Müller, Marcel; Fuchs, Matthias und Lexhagen, Maria (2020): Flickr data for analysing tourists' spatial behaviour and movement patterns A comparison of clustering techniques. In: Journal of Hospitality and Tourism Technology, Bd. 11, Nr. 1: S. 69-82

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

Purpose: The purpose of this study is to analyse the suitability of photo-sharing platforms, such as Flickr, to extract relevant knowledge on tourists' spatial movement and point of interest (POI) visitation behaviour and compare the most prominent clustering approaches to identify POIs in various application scenarios. Design/methodology/approach The study, first, extracts photo metadata from Flickr, such as upload time, location and user. Then, photo uploads are assigned to latent POIs by density-based spatial clustering of applications with noise (DBSCAN) and k-means clustering algorithms. Finally, association rule analysis (FP-growth algorithm) and sequential pattern mining (generalised sequential pattern algorithm) are used to identify tourists' behavioural patterns. Findings The approach has been demonstrated for the city of Munich, extracting 13,545 photos for the year 2015. POIs, identified by DBSCAN and k-means clustering, could be meaningfully assigned to well-known POIs. By doing so, both techniques show specific advantages for different usage scenarios. Association rule analysis revealed strong rules (support: 1.0-4.6 per cent;lift: 1.4-32.1 per cent), and sequential pattern mining identified relevant frequent visitation sequences (support: 0.6-1.7 per cent). Research limitations/implications - As a theoretic contribution, this study comparatively analyses the suitability of different clustering techniques to appropriately identify POIs based on photo upload data as an input to association rule analysis and sequential pattern mining as an alternative but also complementary techniques to analyse tourists' spatial behaviour. Practical implications - From a practical perspective, the study highlights that big data sources, such as Flickr, show the potential to effectively substitute traditional data sources for analysing tourists' spatial behaviour and movement patterns within a destination. Especially, the approach offers the advantage of being fully automatic and executable in a real-time environment. Originality/value The study presents an approach to identify POIs by clustering photo uploads on social media platforms and to analyse tourists' spatial behaviour by association rule analysis and sequential pattern mining. The study gains novel insights into the suitability of different clustering techniques to identify POIs in different application scenarios.

Dokument bearbeiten Dokument bearbeiten