Logo Logo
Hilfe
Hilfe
Switch Language to English

Frisch, Anne; Kaelin, Stefanie; Monk, Raymond; Radke, Josefine; Heppner, Frank L. und Kaelin, Roland E. (2020): Apelin Controls Angiogenesis-Dependent Glioblastoma Growth. In: International Journal of Molecular Sciences, Bd. 21, Nr. 11, 4179

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

Glioblastoma (GBM) present with an abundant and aberrant tumor neo-vasculature. While rapid growth of solid tumors depends on the initiation of tumor angiogenesis, GBM also progress by infiltrative growth and vascular co-option. The angiogenic factor apelin (APLN) and its receptor (APLNR) are upregulated in GBM patient samples as compared to normal brain tissue. Here, we studied the role of apelin/APLNR signaling in GBM angiogenesis and growth. By functional analysis of apelin in orthotopic GBM mouse models, we found that apelin/APLNR signaling is required for in vivo tumor angiogenesis. Knockdown of tumor cell-derived APLN massively reduced the tumor vasculature. Additional loss of the apelin signal in endothelial tip cells using the APLN-knockout (KO) mouse led to a further reduction of GBM angiogenesis. Direct infusion of the bioactive peptide apelin-13 rescued the vascular loss-of-function phenotype specifically. In addition, APLN depletion massively reduced angiogenesis-dependent tumor growth. Consequently, survival of GBM-bearing mice was significantly increased when APLN expression was missing in the brain tumor microenvironment. Thus, we suggest that targeting vascular apelin may serve as an alternative strategy for anti-angiogenesis in GBM.

Dokument bearbeiten Dokument bearbeiten