Abstract
A model that extends the Rasch model and the Partial Credit Model to account for subject-specific uncertainty when responding to items is proposed. It is demonstrated that ignoring the subject-specific uncertainty may yield biased estimates of model parameters. In the extended version of the model, uncertainty and the underlying trait are linked to explanatory variables. The parameterization allows to identify subgroups that differ in uncertainty and the underlying trait. The modeling approach is illustrated using data on the confidence of citizens in public institutions.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Statistik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 0146-6216 |
Sprache: | Englisch |
Dokumenten ID: | 88882 |
Datum der Veröffentlichung auf Open Access LMU: | 25. Jan. 2022, 09:28 |
Letzte Änderungen: | 10. Mrz. 2023, 09:09 |