Abstract
Estimation of latent network flows is a common problem in statistical network analysis. The typical setting is that we know the margins of the network, that is, in- and outdegrees, but the flows are unobserved. In this article, we develop a mixed regression model to estimate network flows in a bike-sharing network if only the hourly differences of in- and outdegrees at bike stations are known. We also include exogenous covariates such as weather conditions. Two different parameterizations of the model are considered to estimate (a) the whole network flow and (b) the network margins only. The estimation of the model parameters is proposed via an iterative penalized maximum likelihood approach. This is exemplified by modelling network flows in the Vienna bike-sharing system. In order to evaluate our modelling approach, we conduct our analyses exploiting different distributional assumptions while we also respect the provider's interventions appropriately for keeping the estimation error low. Furthermore, a simulation study is conducted to show the performance of the model. For practical purposes, it is crucial to predict when and at which station there is a lack or an excess of bikes. For this application, our model shows to be well suited by providing quite accurate predictions.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Statistik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 1471-082X |
Sprache: | Englisch |
Dokumenten ID: | 88885 |
Datum der Veröffentlichung auf Open Access LMU: | 25. Jan. 2022, 09:28 |
Letzte Änderungen: | 10. Mrz. 2023, 08:58 |