Abstract
Using the classification of 6-dimensional manifolds by Wall, Jupp and Zubr, we observe that the diffeomorphism type of simply-connected, compact 6-dimensional integer GKM T-2-manifolds is encoded in their GKM graph. As an application, we show that the 6-dimensional manifolds on which Tolman and Woodward constructed Hamiltonian, non-Kahler T-2-actions with finite fixed point set are diffeomorphic to Eschenburg's twisted flag manifold SU(3)//T-2. In particular, they admit a noninvariant Kahler structure.
| Dokumententyp: | Zeitschriftenartikel |
|---|---|
| Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
| Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
| ISSN: | 0001-8708 |
| Sprache: | Englisch |
| Dokumenten ID: | 88933 |
| Datum der Veröffentlichung auf Open Access LMU: | 25. Jan. 2022 09:28 |
| Letzte Änderungen: | 13. Aug. 2024 12:44 |
