Abstract
We classify all finite energy solutions of an equation which arises as the Euler-Lagrange equation of a conformally invariant logarithmic Sobolev inequality on the sphere due to Beckner. Our proof uses an extension of the method of moving spheres from R-n to S-n and a classification result of Li and Zhu. Along the way we prove a small volume maximum principle and a strong maximum principle for the underlying operator which is closely related to the logarithmic Laplacian.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Analysis, Mathematische Physik und Numerik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 0001-8708 |
Sprache: | Englisch |
Dokumenten ID: | 88935 |
Datum der Veröffentlichung auf Open Access LMU: | 25. Jan. 2022, 09:28 |
Letzte Änderungen: | 13. Aug. 2024, 12:44 |