Abstract
We investigate the coarse homology of leaves in foliations of compact manifolds. This is motivated by the observation that the non-leaves constructed by Schweitzer and by Zeghib all have non-finitely generated coarse homology. This led us to ask whether the coarse homology of leaves in a compact manifold always has to be finitely generated. We show that this is not the case by proving that there exist many leaves with non-finitely generated coarse homology. Moreover, we improve Schweitzer's non-leaf construction and produce non-leaves with trivial coarse homology.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 1793-5253 |
Sprache: | Englisch |
Dokumenten ID: | 88962 |
Datum der Veröffentlichung auf Open Access LMU: | 25. Jan. 2022, 09:28 |
Letzte Änderungen: | 25. Jan. 2022, 09:28 |