Abstract
We establish a novel bijective encoding that represents permutations as forests of decorated (or enriched) trees. This allows us to prove local convergence of uniform random permutations from substitution-closed classes satisfying a criticality constraint. It also enables us to reprove and strengthen permuton limits for these classes in a new way, that uses a semi-local version of Aldous' skeleton decomposition for size-constrained Galton-Watson trees.
| Dokumententyp: | Zeitschriftenartikel |
|---|---|
| Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
| Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
| ISSN: | 1083-6489 |
| Sprache: | Englisch |
| Dokumenten ID: | 88965 |
| Datum der Veröffentlichung auf Open Access LMU: | 25. Jan. 2022 09:28 |
| Letzte Änderungen: | 13. Aug. 2024 12:44 |
