Abstract
We give a new proof of the well-known fact that all functions (N -> N) -> N which are definable in Godel's System T are continuous via a syntactic approach. Differing from the usual syntactic method, we firstly perform a translation of System T into itself in which natural numbers are translated to functions (N -> N) -> N. Then we inductively define a continuity predicate on the translated elements and show that the translation of any term in System T satisfies the continuity predicate. We obtain the desired result by relating terms and their translations via a parametrized logical relation. Our constructions and proofs have been formalized in the Agda proof assistant. Because Agda is also a programming language, we can execute our proof to compute moduli of continuity of T-definable functions.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 1860-5974 |
Sprache: | Englisch |
Dokumenten ID: | 88971 |
Datum der Veröffentlichung auf Open Access LMU: | 25. Jan. 2022, 09:28 |
Letzte Änderungen: | 25. Jan. 2022, 09:28 |