Abstract
For dimensions N >= 4, we consider the Brezis-Nirenberg variational problem of finding S (epsilon V) := inf(0 not equivalent to u epsilon H01(Omega)) integral(Omega) vertical bar del u vertical bar(2) dx + epsilon integral(Omega) V vertical bar u vertical bar(2) dx/(integral(Omega) vertical bar u vertical bar(q) dx)(2/q) , where q = 2N/N-2 is the critical Sobolev exponent, Omega subset of R-N is a bounded open set and V : (Omega) over bar -> R is a continuous function. We compute the asymptotics of S (0) - S (epsilon V) to leading order as epsilon -> 0+. We give a precise description of the blow-up profile of (almost) minimizing sequences and, in particular, we characterize the concentration points as being extrema of a quotient involving the Robin function. This complements the results from our recent paper in the case N = 3.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Analysis, Mathematische Physik und Numerik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Sprache: | Englisch |
Dokumenten ID: | 88973 |
Datum der Veröffentlichung auf Open Access LMU: | 25. Jan. 2022, 09:28 |
Letzte Änderungen: | 13. Aug. 2024, 12:44 |