Abstract
The segmentation and fitting of solid primitives to 3D point clouds is a complex task. Existing systems are restricted either in the number of input points or the supported primitive types. This paper proposes a hybrid pipeline that is able to reconstruct spheres, bounded cylinders and rectangular cuboids on large point sets. It uses a combination of deep learning and classical RANSAC for primitive fitting, a DBSCAN-based clustering scheme for increased stability and a specialized Genetic Algorithm for robust cuboid extraction. In a detailed evaluation, its performance metrics are discussed and resulting solid primitive sets are visualized. The paper concludes with a discussion of the approach's limitations.
| Dokumententyp: | Zeitschriftenartikel |
|---|---|
| Fakultät: | Mathematik, Informatik und Statistik > Informatik |
| Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
| Sprache: | Englisch |
| Dokumenten ID: | 89077 |
| Datum der Veröffentlichung auf Open Access LMU: | 25. Jan. 2022 09:28 |
| Letzte Änderungen: | 25. Jan. 2022 09:28 |
