Abstract
In cooperative game theory bargaining games refer to situations where players can agree to any one of a variety of outcomes but there is a conflict on which specific outcome to choose. However, the players cannot impose a specific outcome on others and if no agreement is reached all players receive a predetermined status quo outcome. Bargaining games have been studied from a variety of fields, including game theory, economics, psychology and simulation based methods like genetic algorithms. In this work we extend the analysis by means of deep multi-agent reinforcement learning (MARL). To study the dynamics of bargaining with reinforcement learning we propose two different bargaining environments which display the following situations: in the first domain two agents have to agree on the division of an asset, e.g., the division of a fixed amount of money between each other. The second domain models a seller-buyer scenario in which agents must agree on a price for a product. We empirically demonstrate that the bargaining result under MARL is influenced by agents' risk-aversion as well as information asymmetry between agents.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Informatik |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
Sprache: | Englisch |
Dokumenten ID: | 89078 |
Datum der Veröffentlichung auf Open Access LMU: | 25. Jan. 2022, 09:28 |
Letzte Änderungen: | 25. Jan. 2022, 09:28 |