Logo Logo
Switch Language to German
Meschini, Giorgia; Vai, Alessandro; Paganelli, Chiara; Molinelli, Silvia; Fontana, Giulia; Pella, Andrea; Preda, Lorenzo; Vitolo, Viviana; Valvo, Francesca; Ciocca, Mario; Riboldi, Marco; Baroni, Guido (2020): Virtual 4DCT from 4DMRI for the management of respiratory motion in carbon ion therapy of abdominal tumors. In: Medical Physics, Vol. 47, No. 3: pp. 909-916
Full text not available from 'Open Access LMU'.


Purpose: To evaluate a method for generating virtual four-dimensional computed tomography (4DCT) from four-dimensional magnetic resonance imaging (4DMRI) data in carbon ion radiotherapy with pencil beam scanning for abdominal tumors. Methods Deformable image registration is used to: (a) register each respiratory phase of the 4DMRI to the end-exhale MRI;(b) register the reference end-exhale CT to the end-exhale MRI volume;(c) generate the virtual 4DCT by warping the registered CT according to the obtained deformation fields. A respiratory-gated carbon ion treatment plan is optimized on the planning 4DCT and the corresponding dose distribution is recalculated on the virtual 4DCT. The method was validated on a digital anthropomorphic phantom and tested on eight patients (18 acquisitions). For the phantom, a ground truth dataset was available to assess the method performances from the geometrical and dosimetric standpoints. For the patients, the virtual 4DCT was compared with the planning 4DCT. Results: In the phantom, the method exhibits a geometrical accuracy within the voxel size and Dose Volume Histograms deviations up to 3.3% for target V-95% (mean dose difference <= 0.2% of the prescription dose, gamma pass rate > 98%). For patients, the virtual and the planning 4DCTs show good agreement at end-exhale (3% median D-95% difference), whereas other respiratory phases exhibit moderate motion variability with consequent dose discrepancies, confirming the need for motion mitigation strategies during treatment. Conclusions: The virtual 4DCT approach is feasible to evaluate treatment plan robustness against intra- and interfraction motion in carbon ion therapy delivered at the abdominal site.