Logo Logo
Switch Language to German

Huck, Sascha Manuel; Fung, George S. K.; Parodi, Katia and Stierstorfer, Karl (2020): The z-sbDBA, a new concept for a dynamic sheet-based fluence field modulator in x-ray CT. In: Medical Physics, Vol. 47, No. 10: pp. 4827-4837

Full text not available from 'Open Access LMU'.


Purpose: We present a new concept for dynamic fluence field modulation (FFM) in x-ray computed tomography (CT). The so-called z-aligned sheet-based dynamic beam attenuator (z-sbDBA) is developed to dynamically compensate variations in patient attenuation across the fan beam and the projection angle. The goal is to enhance image quality and to reduce patient radiation dose. Methods The z-sbDBA consists of an array of attenuation sheets aligned along thezdirection. In neutral position, the array is focused toward the focal spot. Tilting the z-sbDBA defocuses the sheets, thus reducing the transmission for larger fan beam angles. The structure of the z-sbDBA significantly differs from the previous sheet-based dynamic beam attenuator (sbDBA) in two features: (a) The sheets of the z-sbDBA are aligned parallel to the detector rows, and (b) the height of the sheets increases from the center toward larger fan beam angles. We built a motor actuated prototype of the z-sbDBA integrated into a clinical CT scanner. In experiments, we investigated its feasibility for FFM. We compared the z-sbDBA to common CT bowtie filters in terms of the spectral dependency of the transmission and possible image variance distribution in reconstructed phantom images. Additionally, the potential radiation dose saving using z-sbDBA for region-of-interest (ROI) imaging was studied. Results Our experimental results confirm that the z-sbDBA can realize variable transmission profiles of the radiation fluence by only small tilts. Compared to the sbDBA, the z-sbDBA can mitigate some practical and mechanical issues. In comparison to bowtie filters, the spectral dependency is considerably reduced when using the z-sbDBA. Likewise, more homogeneous image variance distributions can be attained in reconstructed phantom images. The z-sbDBA allows controlling the spatial image variance distribution which makes it suitable for ROI imaging. Our comparison on ROI imaging reveals skin dose reductions of up to 35% at equal ROI image quality by using the z-sbDBA. Conclusion Our new concept for FFM in x-ray CT, the z-sbDBA, was experimentally validated on a clinical CT scanner. It facilitates dynamic FFM by realizing variable transmission profiles across the fan beam angle on a projection-wise basis. This key feature allows for substantial improvements in image quality, a reduction in patient radiation dose, and additionally provides a technical solution for ROI imaging.

Actions (login required)

View Item View Item