Abstract
We study the even spin W infinity which is a universal W -algebra for orthosymplectic series of W-algebras. We use the results of Fateev and Lukyanov to embed the algebra into W1+infinity. Choosing the generators to be quadratic in those of W1+infinity, we find that the algebra has quadratic operator product expansions. Truncations of the universal algebra include principal DrinfeId -Sokolov reductions of BC D series of simple Lie algebras, orthogonal and symplectic cosets as well as orthosymplectic Y -algebras of Gaiotto and Rapak. Based on explicit calculations we conjecture a complete list of co-dimension 1 truncations of the algebra.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Physik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik |
ISSN: | 1029-8479 |
Sprache: | Englisch |
Dokumenten ID: | 89164 |
Datum der Veröffentlichung auf Open Access LMU: | 25. Jan. 2022, 09:29 |
Letzte Änderungen: | 25. Jan. 2022, 09:29 |