Logo Logo
Hilfe
Hilfe
Switch Language to English

Charles, Bethan; Weller, Mark T.; Rieger, Sebastian; Hatcher, Lauren E.; Henry, Paul F.; Feldmann, Jochen; Wolverson, Daniel und Wilson, Chick C. (2020): Phase Behavior and Substitution Limit of Mixed Cesium-Formamidinium Lead Triiodide Perovskites. In: Chemistry of Materials, Bd. 32, Nr. 6: S. 2282-2291

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

The mixed cation lead iodide perovskite photovoltaics show improved stability following site substitution of cesium ions (Cs+) onto the formamidinium cation sites (FA(+)) of (CH(NH2)(2)PbI3 (FAPbI(3)) and increased resistance to formation of the undesirable.-phase. The structural phase behavior of Cs(0.1)FA(0.9)PbI(3) has been investigated by neutron powder diffraction (NPD), complemented by single crystal and power X-ray diffraction and photoluminescence spectroscopy. The Cs-substitution limit has been determined to be less than 15%, and the cubic alpha-phase, Cs(0.1)FA(0.9)PbI(3), is shown to be synthesizable in bulk and stable at 300 K. On cooling the cubic Cs(0.1)FA(0.9)PbI(3), a slow, second-order cubic to tetragonal transition is observed close to 290 K, with variable temperature NPD indicating the presence of the tetragonal beta-phase, adopting the space group P4/mbm between 290 and 180 K. An orthorhombic phase or twinned tetragonal phase is formed below 180 K, and the temperature for further transition to a disordered state is lowered to 125 K compared to that seen in phase pure alpha-FAPbI(3) (140 K). These results demonstrate the importance of understanding the effect of cation site substitution on structure-property relationships in perovskite materials.

Dokument bearbeiten Dokument bearbeiten