Abstract
Magnetic nanoparticles are critical to a broad range of applications from medical diagnostics and therapeutics to biotechnological processes and single-molecule manipulation. To advance these applications, facile and robust routes to synthesize highly magnetic nanoparticles over a wide size range are needed. Here, we demonstrate that changing the degassing temperature of thermal decomposition of metal acetylacetonate precursors from 90 to 25 degrees C tunes the size of ferrimagnetic ZnxFe3-xO4 nanocubes from 25 to 100 nm, respectively. We show that degassing at 90 degrees C nearly entirely removes acetylacetone ligands from the reaction, which results in an early formation of monomers and a reaction-controlled growth following LaMer's model toward small nanocubes. In contrast, degassing at 25 degrees C only partially dissociates acetylacetone ligands from the metal center and triggers a delayed formation of monomers, which leads to intermediate assembled structures made of tiny irregular crystallites and an eventual formation of large nanocubes via a diffusion-controlled growth mechanism. Using complementary techniques, we determine the substitution fraction x of Zn2+ to be in the range of 0.35-0.37. Our method reduces the complexity of the thermal decomposition method by narrowing the synthesis parameter space to a single physical parameter and enables fabrication of highly magnetic and uniform zinc ferrite nanocubes over a broad size range. The resulting particles are promising for a range of applications from magnetic fluid hyperthermia to actuation of macromolecules.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Physik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik |
ISSN: | 1944-8244 |
Sprache: | Englisch |
Dokumenten ID: | 89222 |
Datum der Veröffentlichung auf Open Access LMU: | 25. Jan. 2022, 09:29 |
Letzte Änderungen: | 25. Jan. 2022, 09:29 |