Logo Logo
Help
Contact
Switch Language to German

Hudson, Reuben; de Graaf, Ruvan; Rodin, Mari Strandoo; Ohno, Aya; Lane, Nick; McGlynn, Shawn E.; Yamada, Yoichi M. A.; Nakamura, Ryuhei; Barge, Laura M.; Braun, Dieter and Sojo, Victor (2020): CO2 reduction driven by a pH gradient. In: Proceedings of the National Academy of Sciences of the United States of America, Vol. 117, No. 37: pp. 22873-22879

Full text not available from 'Open Access LMU'.

Abstract

All life on Earth is built of organic molecules, so the primordial sources of reduced carbon remain a major open question in studies of the origin of life. A variant of the alkaline-hydrothermal-vent theory for life's emergence suggests that organics could have been produced by the reduction of CO2 via H-2 oxidation, facilitated by geologically sustained pH gradients. The process would be an abiotic analog-and proposed evolutionary predecessor-of the Wood-Ljungdahl acetyl-CoA pathway of modern archaea and bacteria. The first energetic bottleneck of the pathway involves the endergonic reduction of CO2 with H-2 to formate (HCOO-), which has proven elusive in mild abiotic settings. Here we show the reduction of CO2 with H-2 at room temperature under moderate pressures (1.5 bar), driven by microfluidic pH gradients across inorganic Fe(Ni)S precipitates. Isotopic labeling with C-13 confirmed formate production. Separately, deuterium (H-2) labeling indicated that electron transfer to CO2 does not occur via direct hydrogenation with H-2 but instead, freshly deposited Fe(Ni)S precipitates appear to facilitate electron transfer in an electrochemical-cell mechanism with two distinct half-reactions. Decreasing the pH gradient significantly, removing H-2, or eliminating the precipitate yielded no detectable product. Our work demonstrates the feasibility of spatially separated yet electrically coupled geochemical reactions as drivers of otherwise endergonic processes. Beyond corroborating the ability of early-Earth alkaline hydrothermal systems to couple carbon reduction to hydrogen oxidation through biologically relevant mechanisms, these results may also be of significance for industrial and environmental applications, where other redox reactions could be facilitated using similarly mild approaches.

Actions (login required)

View Item View Item