Abstract
The development of high-energy, high-power, multi-octave light transients is currently the subject of intense research driven by emerging applications in attosecond spectroscopy and coherent control. We report on a phase-stable, multi-octave source based on a Yb:YAG amplifier for light transient generation. We demonstrate the amplification of a two-octave spectrum to 25 mu J of energy in two broadband amplification channels and their temporal compression to 6 and 18 fs at 1 and 2 mu m, respectively. In this scheme, due to the intrinsic temporal synchronization between the pump and seed pulses, the temporal jitter is restricted to long-term drift. We show that the intrinsic stability of the synthesizer allows subcycle detection of an electric field at 0.15 PHz. The complex electric field of the 0.15-PHz pulses and their free induction decay after interaction with water molecules are resolved by electro-optic sampling over 2 ps. The scheme is scalable in peak and average power.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Physik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik |
URN: | urn:nbn:de:bvb:19-epub-89520-1 |
ISSN: | 2375-2548 |
Sprache: | Englisch |
Dokumenten ID: | 89520 |
Datum der Veröffentlichung auf Open Access LMU: | 25. Jan. 2022, 09:31 |
Letzte Änderungen: | 04. Okt. 2023, 14:35 |