Abstract
We examine the problem of determining whether a multiqubit two-local Hamiltonian can be made stoquastic by single-qubit unitary transformations. We prove that when such a Hamiltonian contains one-local terms, then this task can be NP-hard. This is shown by constructing a class of Hamiltonians for which performing this task is equivalent to deciding 3-SAT. In contrast, we show that when such a Hamiltonian contains no one-local terms then this task is easy;namely, we present an algorithm which decides, in a number of arithmetic operations over R which is polynomial in the number of qubits, whether the sign problem of the Hamiltonian can be cured by single-qubit rotations.
| Dokumententyp: | Zeitschriftenartikel | 
|---|---|
| Fakultät: | Physik | 
| Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik | 
| ISSN: | 0097-5397 | 
| Sprache: | Englisch | 
| Dokumenten ID: | 89534 | 
| Datum der Veröffentlichung auf Open Access LMU: | 25. Jan. 2022 09:31 | 
| Letzte Änderungen: | 25. Jan. 2022 09:31 | 
 
		 
	 
    


