Abstract
We combine the NLTE spectral analysis of the detached O-type eclipsing binary OGLE-LMC-ECL-06782 with the analysis of the radial velocity curve and light curve to measure an independent distance to the Large Magellanic Cloud (LMC). In our spectral analysis we study composite spectra of the system at quadrature and use the information from radial velocity and light curve about stellar gravities, radii, and component flux ratio to derive effective temperature, reddening, extinction, and intrinsic surface brightness. We obtain a distance modulus to the LMC of m - M = 18.53 +/- 0.04 mag. This value is 0.05mag larger than the precision distance obtained recently from the analysis of a large sample of detached, long period late spectral type eclipsing binaries but agrees within the margin of the uncertainties. We also determine the surface brightnesses of the system components and find good agreement with the published surface brightness-color relationship. A comparison of the observed stellar parameters with the prediction of stellar evolution based on the MESA stellar evolution code shows reasonable agreement, but requires a reduction of the internal angular momentum transport to match the observed rotational velocities.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Physik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik |
ISSN: | 0004-637X |
Sprache: | Englisch |
Dokumenten ID: | 89589 |
Datum der Veröffentlichung auf Open Access LMU: | 25. Jan. 2022, 09:31 |
Letzte Änderungen: | 25. Jan. 2022, 09:31 |